C.U.SHAH SCIENCE COLLEGE, AHMEDABAD

SEMESTER-IV (MATHEMATICS) **INTERNAL EXAMINATION, MAT-205**

OR

Prove that an element [m] in Z_n has a multiplicative inverse iff (m,n) = 1.

Suppose G be a group and a and b are elements of G with ab = ba then prove that

Define group Prove that the set G of rational numbers other than 1 with operation

Define Normal subgroup. Prove that a subgroup H of G is a normal subgroup of

Date :- 18 /03/2015 Marks:50 INSTRUCTION: Write the answer of quiz on first page of Answer sheet.

> \oplus such that $a \oplus b = a + b - ab$ for $a, b \in G$ is an abelian group. OR

State and prove Lagrange's theorem for finite group.

G if and only if $aHa^{-1} \subset H$ for each $a \in G$.

Q-1

Q-1

Q-2

Q-2

Q-3

 $ab^n = b^n a$; for each $n \in N$.

Define: Subgroup, Index.

	Q-3	Give an exnormal.	ample o	of a non	-comm	utative	group G,	each of who	ose subgroups	is
	Q-4 Define Kernel of a homomorphism between two groups. Prove that the ker homomorphism is a normal subgroup.									
	Q-4	For the cyclic group $G = \{e, a, a^2, a^3,, a^{23} / a^{24} = e\}$ of order 24 Obtain (i) Orders of subgroups generated by a^8, a^{11}, a^{12} and (ii) All the generators of G.								
Ansv	ver the fo	Ilowing questi	ons in st	ort.	QU	IZ				
(1)	In Z_7 , the congruence class modulo 7,the inverse of [5] is									
(2)	$\phi(n)$ i	s an even for n	[3] =	(c)	[5]	(d)	does no			
(3)	(a)	1 (b)	2	(c)	3 $(c)^{-1} = -$	(d)	none of	these		
(4)	(a) The set a*b= a	or a,b, $c \in G$, where G is a group; $(abc)^{-1} =$ i) a b c (b) $a^{-1}b^{-1}c^{-1}$ (c) $c^{-1}b^{-1}a^{-1}$ (d) none of these the set G of all real numbers except -1 forms a group under the binary operation * defined by be a + b + a b. The identity element of this group is								
(5)	(a)	1 (b) nber of right co greater than	2	(c) any sube	0 group of	(d)	none of		oon of L. G.	
				X		-X	X		for an age on an had not yet	